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ABSTRACT

The problem of radiative heat transfer in a nonisothermal
medium is considered. The analysis is carried out for the plane,
spherical, and cylindrical geometries separated by a cloud of
particles. The media are assumed composed of spherical particles
of uniform diameter and complex refractive index which emit,
absorb, and scatter enefgy in an anisotropic fashion. The
solution of the equation of transfer for the aforementioned

media is obtained by finite-difference iteration method.
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INTRODUCTION

Many heat transfer pfoblems involve radiative heat
transfer through media having local inhomogeneities which
effect the transmission. Some specific examples of such
problems include the foilowing: The luminous particles in
solid propellant rocket ‘exhaust; ablation particles in re-
entry heat shields; MHD-applications; etc. In each case these
inhomogeneities absorb, emit, and scatter enérgy anisotropically.
For a rigorous treatment of problems involving scattering, both
the direction and intensity of scattered radiation must be
accounted for. However} the problem in general is so compli-
cated that for soiutions a compromise has to be made between
accuracy and faithfulness to the physical situation. Most of
the proposed computational methods are limited to plane, one-
dimensional geometries, or in cylindrical geometries to not-
fully—participatin§ media. Some analytical methods are built on
the possibility to expréss the scattering diétribution fﬁnctions
analyticélly ih Véry few terms of a series, which limits the
applicability particularly in engineering problems. So it is
thought that a reasonably simple computational method, which can
remove some of those limitations, will be very useful to the
engineer who enéounters complicated radiation problems; although,
in order to be at all successful in an analysis, very far
reaching assumptions and simplifications will have to be made.
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The radiation energy flow through a medium that absorbé,.
scatters and re—emiﬁs radiation energy, according to a given.
temperature distribution T(r) within the medium, is a function
of the location and the direction into which one measures. It
is an integral over the radiation intensity components of all
directions in the geometrical space. So the natural approach to
the problem is to ask for the intensity field throughoﬁt the

medium, which is described by the equation of radiation transfer

> > > > > po.. > >,
(g - V) Iv(r, s) = —vaIv(r, s) + T:ri . ” S(s, s")
47
. 1\)(?, S1) du' + ok Ty, (x) (1)

The equation says that the change of the monochromatic radiation
intensity Iv at a position ;, measured from a direction g,
consists of an extinction of energy —pBVIv(z, g),

an addition due to energy scattered from all other directions s

into the direction g under consideration:
po .
v [[s@ 3 - n,a 3 e
45

and a re-emission of energy by the medium element at T into the

. . -> ->
direction s; pKvIbbv(r)



I = intensity
v = frequency

p = mass density of the participating medium

Bv = monochromatic mass extinction coefficient
o, = monochromatic mass scattering coefficient
Ky = monochromatic mass absorption = emission coefficient

(assuming the validity of Kirchhoff's law)
S = is the normalized scattering distribution function
dw' = infinitesimal element of solid angle about the direction s
in space
' = incoming ray
Ibbv(z) = IbbéT(;)) = black body emission intensity of the
participating medium at the frequency v, depending on

the temperature of the medium.

The boundary conditions to equation (1) result from the
fact that intensities radiated from the boundaries into the
medium consist of two paits: the energy emitted by the bbundary
according to its temperature; and the reflected part of the
‘radiation energy impinging from the medium on the boundary.

The non-homogeneous integro-differential equation (1)
with several partial differentials in general is with the
peculiar boundary conditions, which contain in fact the total

solution to the equation, extremely complicated. Solutions have



been worked so far only for various degrees of simplifications.
Since it was intended to try a solution not only in plane,

one-dimensional geometries, but also in spherical and cylindrical

geometries, as many engineering applications really dictate, the

following approach, different from the ones published so far,
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was envisioned.
ANALYSIS

Apply quadrature approximations to the scattering integral
and fulfill equation (1) only at a finite number of directions
gi’ thus making equation (1) into a system of non-homogeneous
ordinary or partial differential eqguations. By using finite-
difference representations for the derivatives with respect to
the space coordinate and transformations for the derivatives
with respect to the direction, make these differential equations
into a system of algebraic equations, which, because of its exces-
sive size is not solved by matrix inversion but by iteration.

fhe approach seems to be suitable for all quasi-one-
dimensional problems such as plane, infinitely wide geometries,
."spherical and cylindrical geometries with full symmetry.

'Because of the finite-step procedure, no conditions have
to be fulfilled for the property data in their dependence on
frequency and temperature, and for the témperature profiles
themselves. The problem is solved monochromatically at as

- many frequencies as seem to be necessary to find the total



radiation energy transfer, over a suitable band model or any
other numerical integration over the frequency. The scattering:
distribution functions may be from scattering theories in

analytical form or from measurements in experiments.

PLANE GEOMETRY

2, 3, 4 for the one-dimensional

The existing methodsl’
case are thought to be too lengthy and complicated to prbvide a
quick and accurate picture of the radiation flow throughout the
medium for a large éet of varied materials and configurations to
find optimal designs. A numerical iteration of the approximated
equation of radiation transfer was tried and found to be a fast
means of providing a complete picture of the radiant heat flow
characteristics for the plane ohe—dimensional geometry and axi-
symmetric scattering functions.

Partly following earlier analysesl’ 2 the equation of

radiation transfer is taken in its one-dimensional form:

dIv(x,e)

po

- L = - : : VT

CQS 9 ax pB\)I\)(X'e) + "-—"4 fe!
il

2T

fet_g S, (x,0")

=0
(2)

: 1 1 1 ’
sin 6' de' d¢é' + pKIbbv

. The inner integral can be computed if the intensity does not

depend on ¢', giving integrated scattering functions as tabu-

lated in earlier worksl"z.



The outer integral is approximated by a quadrature that

allows for the discontinuity of the intensity at the boundaries. -

The differential is approximated by finite difference quotients.

This delivers a set of algebraic equations for the intensities

measured into the discrete directions fixed by the quadrature

coordinates.
N N 3 ~ +
Ax . . + S. .
I - (1 pB ) Iin + poAx I a (Slj Ijn -9
n+l ] 2ul j=1
pKAX
+ I
J bb
My
- - k +
I, = (1 - 08A%) g +SGAX I a.(S .. I. S . .
n-1 Hy 1n Hy j=1 J 713 I, =-1i=]
+ pKAX T
My bbn
i=1,2, 3. . .k
where
U = cos 8
g = mass scattering coefficient
Sij = gcattering function for the discrete angles ei, ej

a = quadrature weight factor

ij = discrete coordinates ui,vuj

(3)

(4)



n = number of finite difference step

o = relative size of scattering particles

Q
]

angle between incoming and scattered ray
K = order of the quadrature = number of coordinates in the
range 0 < u < 1.0

Each intensity value Ii at one point X

+1 of the space coordi-
n+l

nate grid is expressed by all values Ij of the previous point
n
X_ .
n
This can be used for an iteration of the system, using

the wall emission intensities as starting values for the iteration:

The monochromatic black body radiation intensity is:

_ 2hv?® 1

Tpp (T) (5)
: v

c? hv '
' e V) - 1
Xp(kT)

where

' 7
h = Planck's constant
k = Boltzmann constant

c = speed of light in the medium

T = temperature of the medium



The boundary conditions are:

+ k ~

Ii] = (1 - pl)Ibb + 2p, =§1 asuy Ijl (Boundary 1) (6)
, 1 J=

I. = (1 -~ I + 2 Y a.u. I. Boundary 2) (7

iy T TP Ty 20, 52y 9% Ty ( Y :

where
+ = intensities in the range 0 < 6 < 90°
- = intensities in the range 90° < 6 <°180°

p,r p, = reflectivity of boundaries 1 and 2

The boundaries are assumed diffusely reflecting and
emitting, a condition that can easily be removed. The reflec-
tivities are also assumed not to depend on the angular distri-
bution of the incoming intensities.

The iteration converges fast for optical thicknesses
0.1 < T, S 30, which covers sufficiently the range of T about

~1.0. ‘The guick convergence allows to work 20 to 30 monochromatic
heat flux profiles which can be integrated numerically to give
the total heat flux, provided the sets of property values and

scattering functions are available and prepared for the case

under study. The monochromatic heat flux is:

Qv(xn) = 27 I a.'(Ij - I.) . ‘ ‘8)
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Since the finite step procedure uses about 200 to 300
points along the coérdinate between the boundaries, arbitrary
temperature profiles in the participating medium can be analyzéd
accurately. |

It was found that low (3, 4) ordervGauss quadrature
approximations in certain cases cause an appreciable error of
the essential wall heaﬁ fluxes. The iteration permits.to
increase the order of quadrature at little cost of computing
time and storage space only.

Figure 2 gives fhe_results compared to computations by an
earlier analytic methodz, show fair agreement for the frequency
range in which the main heat flux is carried.

Deviations in the wall heat fluxes, particularly at the
hot walls, appear for the low side band frequencies where little
heat flux is carried. It should be noted that the analytical
computation was done in third order quadrature, whereas the
‘iteration was already made in fourth order.

Figure 3 shows heat flux profiles and energy source
strength profiles* for two representative cases with linear
" temperature profile and non-gray wall properties. It can be
seen that to maintain a linear temperature field in the medium
a field of strong energy sources and sinks has to exist in

order to fuel or absorb the radiant heat flow. These energy

*The energy source strength is the change of the radlatlon
energy flux with the space coordinate,
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sources may be created by any non-radiative energy generation
or transfer mode. Therefore, only the energy source strength
integrated over the frequency has any physical meaning.

In the aforementioned section the method was described
for plane, one-dimensional conditions. The governing equation
of radiation trensfer for these conditions was Equation (2),
which was approximatedlby a system of equations, approkimating
the integral by a quadrature and the differential 2;2 by a
simple finite-difference quotient.

This method wae extended to scattering media within
spherical and cylindrical geometries. It was found to work,
however, only within certain limits of the optical thickness.

The problem is posed as follows: Find the monochromatic
heat flux distribution in the medium between the wells as
presented in the Figure (4).

The spherical‘and cylindrical cases are assumed completely

symmetric, which makes the problems one-dimensional.
SPHERICAL GEOMETRIES

The equation of radiation transfer, describing the
intensity field in the region, is now:

3I(r, ) 1 - u% 31(x, W)
- | S :

or ‘ r Ju

= _pBI(rr 11)

-+l

po 1y . ' '
= J I(r, u') S(u, u') du' + pkI, (r) (9)
-1



12
With Kirchoff's law, k, corresponds to the monochromatic
mass emission coefficient, e= k.
The boundary conditions for Equation (9) are for diffusely

emitting and reflecting boundaries exactly as in the plane case:

0

— - — . e . \ !

T(r=Ryyr W) = (1 -p)) » Tpple=Rype w) + 2 Iu
-1

N - [ 1 3
'I (r = R; » u') du (10}
0 <uxl
Subscript 1 refers to the inner boundary.

1

I (r= Roar W) = (l - p,) Ibb(r = R_gr u) + 2 [ y'

-1l cu<0
Subscript 2 refers to the outer boundary and p, is the mono-

chromatic reflectivity of -this boundary.

TO Equation (9) the quadrature approximation of the integral is
applied again, generating from (9) a systemaof differential

- equations of order 2k, with k = order of the quadrature =
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number of coordinates of the quadrature in the half range

0 < w1,
BI(ui, r) 1 - ui oI oo k
= - - pBI(ui, r) + — 2 aj
or r oy 2 j=1
Uir r

(s, uj) I(uj, r) + S(ui, u_j) I(u_s, x)1

J

+;pKIbb(r) (12)

i=1,2, 3, .. .k, -1, -2, -3, . . .=k.

To work the derivatives a1

Bu}u r @ suggestion for a
il

transformation was accepted from S. Chandrasekhar3.

Assume a function

2
Qe(U) = 55—1—1'[Pe_1(U) - Pe+l(u)]

1-w? ap_(n)

ele + 1) du } (13)

with Pe(u) = Legendre polynomial of order e. The partial deriva-

tives 9I/9u can be expressed in the following way: Integrate

1 _
the integral f Qe%% du by parts, observing the discontinuity of
-1

I(r, p) at r = Rin' g =0, and r = Réd’ U =0
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The expression

d Q (w)

= -P_(u) (14)
du € .

found by applying recurrence formulatibns for Legendre polynomials

to (13), will be used in the course of the integration:

-

} 3L (xr, wu)
f Qe(ll) —_— dpu = Qe(O)' [T (r, p=-0) - I(r, p = +0)]
-1 ou
1 -
E J I(r, w) + P_(u) du (15)
-1

Within the region Rin < r < Ra the intensity I(r, u)

d

is continuous for all r, p and (15) reduces to

1 1 ,
f 0, (W Fp du ='J I(r, W) P, (W) du . (16)
-1 R

Both integrals may be approximated by the same quadrature that

was applied to the scattering integral in the main equation (9):

+k a1 C+k
> . ) = Nz . P )OI .y . 17
as Q4 (uj) BU}U LI 2y e(uj) (u3 r) (17)

j=-k
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Thus the differentials %%} are expressed by the functional
H.,T o

jl
values I(uj, r) at the same coordinates u.
For all %%} a system of algebraic equations has to be
U.,r
J

(&%)

generated by taking for e .values of 1, 2, . « . 2k in Equation

{17). This system may be written

[X] - [I'] = [C] - [I] | (18)

with the elements chosen for least computational work:

1 - u ’
u .

a.u. apP.
14T 1] - 2 (20)
J 0 2i(2i + 1) dp
M
J
i=1,2,3...2%
ClJ = aj . Pi (uj)
. =1 (u., r)

J J
System (18) can be solved immediately to the following

éxtent:

(11 = x171 = e} - (1] = (e - (1] | (21)
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To the differentials ———E;~f—— , @ simple finite-difference
guotient is applied to the set of equations with the afore-
mentioned boundary conditions and iterated like in the plane
case. Close to the boundaries the system (21) has to be
modified because of the. discontinuity of the intensity as
described above. The modification consists of using i = 2, 4, 6,
8 .. . 2k instead of i =1, 2, 3, 4 . . .A2k, and working the

differentials independently in each half-range -1 < p £ 0 and

0 < u < 1l. This iteration converges in a region of optical
Rad :
thickness Tov™ f p(r) - B(r)dr, as indicated in Figure 5. The
R,
in

range seems not sufficient for lower T oy about 1.0. The key to

improve this range of convergence lies in a more accurate

determination of the partial differentials %%} .

HirTh
Figure 6 demonstrates that the numerical error in the finite-
step iteration decreases linearly with the step size. The
results for this représentative éxample show that the extrapo-

lated finite step error for 200 steps between the boundaries is

below 2%. The error increases slightly with optical thickness
R,
T oy with decreasing spherical parameter r = §£E, and with
, ~ad

decreasing absolute value of the heat flux. In Figure 6 and the
_following figures only the monochromatic wall heat fluxes, Ql
at the inner boundary Rin and QLL at the outer boundary Rad

are discussed. It seems to be most concluéive'to study the
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heat transfer in spherical and cylindrical geometries in
comparison to the results in plane cases. So the ratios

_ QO spherical geometry

v - . .

0 Q plane geometry are plotted against the spherical
Rin

r =g which is a similarity parameter. A result Q' (r) is
ad

valid for all combinations Rin and Rad which have one and the
same r.

Since Ql and QLL'represent the monochromatic wall heat
fluxes at theé walls per unit area, the total energy transfer

at the inner wall, Ql d 4W.Rin compared to that at the outer

is also demonstrated by a

. 2
wall, QLL 4T Rad
(Rin 2 2
Ql red. = Ql l'f?'—:' = Ql R o (22)
aa .

The following Figures 7 to 10 indicate that this energy
transfer always decreases at both walls, the more spherical the
problem becomes. In order to reiate the values Qi to true
magnitudes, each Figure gives the heat flux values in the plane
geometry, which is the limit r = 1.0. The heat flux with no
medium present, or Tov = 0, is also given as QN' This;QN
represents the heat flux per unit area of oﬁter boundary and

aiéo the energy transfer through the fegion to boundary 1,

Hecause‘this energy flow stays constant with no medium interfering.
. Q (x)
e 14
Qq(r = 1.0)

! i also referred to outer boundary area.
N red
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Figure 7 shall indicate the strong influence of the

temperature profile in the medium. Three periles are compared:

linear TH = 2000 + 2000 £ (°K)
L L
. X X X °
plus-parabolic T[E} = 2000 + 2000 - T {l + 4 - [l - i}}( K)
. . X X X o
minus-parabolic T[i} = 2000 - 2000 - I {l - 4 - {l - f))( K)
with X=r_ - R, , L =R - R.
n in ad in

Thus the wall temperatures are the same in each case,
2000 °K and 4000 °K, and only the different temperatures within
the medium cause the differences in the Qi.

Figure 8 shows a comparison of different optical thick-

nesses T, at one temperature profile. Although the curves

for low Tov have to be terminated early because of convergence

problems, it can reasonably be extrapolated how Qi and QiL
red -

go to the common limit Q' for T + 0.
; Nred oV

At the conditions chosen for Figure 9 the effect of the
scattering is quite substantial as the mere change of the rela-

tive siie & = d i T of the scattering particles from 1.0 to 4.0

shows.

Figure 10 demonstrates the weak influence of the wall

- reflectivities p, and p, on the relative wall heat flux values

Qi,at the optical thickness Toy = 5.57. This should, however,
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not lead to the conclusion that the absolute Values Qi are also
very close. They differ quite substantially, as the table for

r = 1.0 indicates.
CYLINDRICAIL GEOMETRIES

The problem is as for spherical geometry, (previous
section). With the assumptions stated there, the equation of

radiation transfer for the intensi£y field becomes:

9I , sin ¢ cos ¢ cosb JI sin 6 cos? o I

cos O 7 ¥ T 3% r 36
n 27
= - oBI + %%n J ] sS(6, ¢, ', ¢') I(x, 06", ")
| | 8'= o ¢'=o0
3 t 1
sin 6' de'd¢ .+ pKIbb(r) (23)

I=1I(x, ¢, )

The intensity I has a symmetry over ¢ for any fixed r and 6:

I(r, 8, ¢) = I(x, 6, -¢) = I(xr, B, 7=¢) = I(x, 6, w+¢)
(24)

From this it is concluded and checked by computational results
that one may assume an average I(r, 6) over ¢ to be used in the
scattering integral in (23), because I(r, 0,¢) will not change

extremely over ¢ for fixed r, 6.
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This allows to reduce the double integral in (23) to a

simple integral.

T 27
& S(6, ¢, 6", ¢')+ I(xr, ', ¢') sin 6'dA0'dd' =
80'=0 ¢'=0
1.
%Q.J i(r, u') -« S(u, p')du' with u = cos © (25)
..l ’
Introducing the transformations cos 6 = py and cos ¢ = ¢ also in

- (23) and writing the equation for discrete coordinates By and

Lot
- 2 _ 2
9L (u; /s CTyr X) _ L | 1 - uf 21} . 1 gq
or r “e My UjU s Lgr T Lo
k
31) 0B po
) __""I(U-l T _r r) + 5= 7
Bﬁjce, Mir ¥ My i e 2ui =1

aj[I(uj, r) Sluy, uj) + I(u_j, r) S(uiu_j)}

oK
+ i Ibb(r) (26)
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Generally, the numbers of coordinates My and Ce' kl and k2

respectively, on which the equation of transfer shall be ful-

filled, could be different. But choosing k, = k2 permits to

1
apply the same procedure for the evaluation of the derivatives

oI

}}. 3T
ou Wir s T

a 2L ,
an ac}ce, TP

. Of course, the kind of quadrature

BI(Uirgelr)

has to be the same. The partial derivative N is

replaced again by a simple finite difference quotieht, and the.

system resulting from (26) and from (21), applied to both %%
and %% ;, 1s iterated as in the plane and the spherical cases.

The Figure 5 indicates the region of convergence for this

- computation. The limit of convergence compares to that of the

1 [ 2

spherical case b r r . .
p y I sphere ' min. convergence

. >
cyl'min, convergence
Figure 11 gives one sample of the relative wall heat fluxes for
different temperature profiles. If results of the spherical

case are compared with results of the corresponding cylindrical

in

case (which means all parameters are equal, except for r = §——),
ad
one finds that they agree within less than about 4%, if the
correlation
= 12 '
Teylindr. = Tsphere (27)

is used. This property can be considered very helpful, because
a problem at hand in cylindrical geometry may be reduced to a

spherical problem by just applying (27), and thus the higher
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accuracy and the lower computing time (about 1/5) of the
spherical case can be utilized.

The remaining task for this numerical analysis is to try

to find a way to remove the convergence limit for lower Toy®
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A Relative Linear temperature

Error % profile T(r) from 50 steps
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Figure 6. Basic linear error in spherical geometries
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